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For some time it has been known that student use and knowledge of the constituent parts of

equations, have not mirrored those of mathematicians. This paper describes some

understandings of particular parts of the object “equation” displayed by lower secondary

school students and seeks to analyse them in terms of properties of those parts of equations,

including the equals sign. We find that students display a number of different conceptions

of what an equation is, and this appears to be connected with their perspective on the role of

operators and transitivity. This data has assisted with construction of a framework for

understanding the mathematical equation object. 

Equations are ubiquitous in mathematics and understanding them forms a crucial part 

of the early school mathematical experience. While to the experienced mathematical eye 

they appear as a single object they are composed of a number of separate entities. Each of 

these parts, and, indeed, the gestalt they comprise, may be viewed from several 

perspectives according to Laborde (2002). The views include a surface or perceptual one 

and a mathematical one, whereby the mathematical properties of the entity or object are

understood. In this paper we address the hypothesis that for a mathematical equation, it is 

the arithmetic numbers, the symbolic literals, the operators, and the ‘=’ symbol that each

hold mathematical properties that subsequently contribute to the whole equation. Hence 

understanding the mathematical equation object would require the formation and 

integration of these individual properties. The hypothesis that the binding agent for 

understanding these constituent parts is language is not addressed here but is deemed

crucial by the authors. 

While many students develop a reasonable working knowledge of arithmetic numbers

and their operators, the same cannot be said of symbolic literals (Küchemann, 1980). Some

learning environments encourage a process-oriented view of mathematics (Thomas, 1994) 

where the object of study is not cognitively engaged, and hence pseudo-conceptions 

(Vinner, 1997) are more likely to occur. Once these pseudo-conceptions are in place (such

as letter as object) they can be very resistant to change and may act as cognitive obstacles

when a student is encouraged to perceive a mathematical object, such as an equation, via 

its properties.

There is clear evidence that students exhibit problems going beyond the separator 

operator interpretation of the equals symbol (Baroody & Ginsburg, 1983). The study by 

Denmark et al. (1976) reports that first grade students were able to develop some flexibility 

in accepting the use of the equals symbol in a variety of arithmetic sentence structures

(e.g., 3 = 3, 3 + 2 = 4 + 1, 5 = 4 + 1), achieving this by means of balancing activities and 

corresponding written identities. However the students still viewed the equals symbol

primarily as an operator rather than a relational symbol. Herscovics and Kieran (1980) 

investigated student acceptance of an equivalent amount written in a variety of ways (e.g.,

4 + 7 = 12 – 1) and found that they were able to accept and work quite comfortably with

arithmetic identities containing multiple operations on both sides. It appears that the

meaning of the equals symbol needs to evolve from the intuitive ideas of sameness or

counting the total found in arithmetic, and the idea of the result of a procedure (Kieran, 
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1981), to a notion of the equivalence of algebraic statements with reflexive, symmetric and 

transitive properties. While this process of change does not appear to come easily or

quickly to many students, Whitman and Okazaki’s (2003) results show that student

understanding of “=” as equivalence could be improved from the first to second grade.

When we ask the question ’What is an equation?’ we may still get a number of 

differing responses. In their research with preservice teachers, Hansson and Grevholm

(2003) found that very few preservice teachers wrote that y = x + 5 was an equation, 

tending to a numerical interpretation of y = x + 5. One view of an equation is as a structural

statement or representation of a mathematical relationship between entities that are the 

objects of an algebraic and/or arithmetic system. One of the requirements for generating 

and adequately interpreting an equation structurally is a conception of the reflexive, 

symmetric, and transitive character of the equals sign as an equivalence relation. It is 

through these properties that the equals symbol conveys the concept of equivalence. 

Collins dictionary (Borowski & Borwein, 1989, p. 194) deals with the definition in this

way:

Equation, n. a formula that asserts that two expressions have the same value; it is either an identical

equation (usually called an IDENTITY), which is true for any values of the variables, or a 

conditional equation, which is only true for certain values of the variables (the ROOTS of the

equation).

Thus they specify two possible types of equation: a conditional equation; and an 

identical equation and, for example, 2x + 1 = 6 would be a conditional equation, but

2(2x + 1) = 4x + 2 would be an identical equation.

5. Pick out those statements that are equations from the following list and write

down why you think the statement is an equation.

a) k 5

b) 7w w

c) 5t t 4t

d) 5r 1 11

e) 3w = 7w – 4w
8. For what values of x does: (show any working) 

a) x + 2 = 2 + x
b) x + 1 = 2 + x
c) x + 3 = x + a

10. If p = q + 3 and q + 3 = 2 – r, write p in terms of r.
11. If a = 2 – b and c = 2 – b, write a in terms of c.

Figure 1. Some of the questions from the questionnaire.

We may ask, what are the distinctive properties of each of these types of equation that 

construct the mathematical object? The purpose of this present research study was to 

investigate younger students’ perceptions of equation and to relate them to the constituent

parts of the mathematical object. 

Method

The research reported on here forms part of a larger cross-sectional study considering

students’ understanding and use of the equals sign. In this study 29 Form 4 students (age 

14-15 years) from a large, coeducational, high socio-economic school in Auckland were 
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given a questionnaire with 12 questions aimed at different aspects of equation we had 

previously identified (Godfrey & Thomas, 2003). They were given 55 minutes to complete 

the questions, doing so in a normal mathematics class. There were 8 female and 21 male

students. Figure 1 contains a summary of the questions considered in the analysis below.

Results

Data from a previous part of this research with 81 Year 12 students (15-18 years old)

on how students understand the components of an equation, particularly the variables and 

the equals sign, enabled us to begin the process of constructing a framework attempting to

map out perspectives on equations. This framework (Godfrey & Thomas, 2003, see Figure 

3) suggested that properties of the = sign, symbolic literals, numbers, and operations all 

contribute to an overall perspective on equation. In this present study, question five of the 

questionnaire (see Figure 1) asked students to identify from a list of five statements those 

that they thought were equations, giving reasons for their choices. Most of the student 

responses fell into one of the three distinct categories, as described in Table 1. 

Table 1 

Categories of Responses for Question 5 

Statements which are an

equation

Stated reason for the choice Number of students 

in category 

a, c, d, e Needs an = sign 8

b, c, d, e Needs an operation to carry out 3

c, d, e Needs and = sign and an operation to 

carry out

9

These categories may be exemplified by the responses of students 7, 1, and 8 

respectively, as shown in Figure 2. It seems that the category 1 students are basing their 

decision solely on the surface structure of the equation; if it contains an equals sign then it 

is an equation. They responded: 

7. An equation has an = sign in it

12. Equation, = is present

13. because they have equals in them

In contrast, the category 2 students have the perspective that as long as there is an 

operator present and they are able to carry out an operation to produce a result then it is an

equation, although there may be no = sign present. They no doubt think that it is not a 

problem to supply the sign themselves prior to writing the answer (Kieran, 1981). Here are 

the ways in which this was explained by these students:

1. …they involve taking 2 or more sets of numbers and either subtracting, adding or multiplying or

dividing to get another number.

16. because you have to subtract, add, multiply and/or divide.

26. because it envolves [sic] –, +, , sign in it. 
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Student 7 
Student 1 

Student 8 
Figure 2. Examples of each category of equation response in question 5. 

The category 3 students have a subtly different perspective from the second. Since for 

them the = sign has to be present initially, but there must still be an operator, or as student 

8 puts it “more than just one letter or number on the side”, implying an operator between 

them. They comment that: 

8. because they have equals sign and more than just one letter or number on the side.

11. because they all involve =s & –s.

14. because it is something you must work out to find a value.

16. because it has an answer and a means of getting the answer.

24. because it has an answer and uses subtraction.

29. They all have an = sign and it’s not just a statement like a). 

Among those not fitting neatly into this classification were 6 students (there were also

3 no-response students) who gave a mixture of answers with little discernible pattern. It 

seems that they may be in transition between the identifiable groupings we have identified, 

or they may have developed pseudo-conceptions. What some have in common though is an 

emphasis on the need for operators, and on wanting to ‘solve’ and equation. Their reasons 

were:

Student 3 – gave c and e, “Because it has a correct answer”;  “the answer is right.” 

Student 4 – gave b, d and e, “yes, because w stands for a number and you are minusing it from 7w”;

For b he said “no, the t’s do not represent a number…”, so he has a specific unknown view but only

of particular letters. 

Student 6 – gave c since “question in correct order and is correct. He displays a process-oriented

perspective, and a need for a correct answer in the equation. 

Student 20 – gave b, c and e “because there is still stuff to figure out. She is close to a group 2

member but she only applies the operator to letters and not to part d which has 5r – 1. 

Student 22 – gave a, c, and e as equations because “everything is balanced and works out

[correctly].” He seems to exclude d because it is a conditional equation, not an identical equation
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like c and e, but accepts part a since k=5 can be seen as completed. This is an unusual stance since

the ‘standard’ type of equation students of this age are used to solving would be of the conditional

type d. 

Student 27 – gave c and d, saying “has equal sign and only one unknown number” stating for e that

“it is already true so it is not an equation.” He seems to be moving toward category one, but also

wants to have some work to do. His failure to group e with c may be a misread or an inconsistency.

Our previous model of equation understanding based on work with older students had 

identified the importance of the properties of the = sign, and the student perspective on the 

use of letters as symbolic literals. We were interested to know how the categories above 

would mesh with these understandings, and so began an analysis of responses to questions 

8 and 10 (see Figure 1). Question 8 required an understanding of the use of letter as 

variable, since one needed to be able to say that the equation was true for all (real) values 

of x, or in part c) that it was only true when a=3. Question 10 requires the ability to see and 

use the transitivity property of the = sign in an equation. Table 2 shows the results of the 

20 students in the 3 categories above on questions 8, 10 and 11 (see Figure 1). 

Table 2 

Results on Questions 8, 10 and 11 for the 3 Categories of Students 

Category of 

Equation

No. with Q8 correct No. with Q10 correct No. with Q11 correct

1

a 8 

b 5 

c 5 

6 8

2

a 1 

b 1 

c 1 

1 1

3

a 5 

b 3 

c 2 

3 5

Category 2 was a small sample and student 14 got all three questions correct while 

students 1 and 26 got nothing correct, and made only 2 responses between them, making 

them the least successful group. Overall, it appeared that the category 1 students were 

generally more successful than the category 3 group of students, with 5 of the 8 getting all 

three questions completely correct. The summary of the individual responses below (Table 

3) shows that students 11 and 14 from category 3 were able to answer all the questions,

while students 8 and 9 got both transitivity questions correct but were unable to use a 

knowledge of variable to answer question 8. In contrast, student 29 in this group had a

knowledge of variable but not of transitivity. Only student 20 of the 6 non-categorised 

students correctly answered question 10, and only student 27 from this group got any part 

of question 8 correct (he was totally correct).

What do these results tell us? It may be deduced that the students who still had some

view of equation as requiring operators and solutions did not perform quite as well as those 

who used the surface structure of the presence of an = sign. This latter group may well 

have subsumed much other knowledge of equations under this umbrella catch-all, since 

they could mostly cope with letter as variable and the transitive property, and an interview

would reveal useful information here. 
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Table 3 

Summary of the Individual Responses of Some Students 

Category 1 Q8c)

7. NR; 12. if a equals 3 then all values, if not no values; 13.

x = anything if a = 3; 15. x = r (any real number) but only if a = 3; 

17. all values; 18. anything as long as a is three; 21. x can equal

any real number; 30. depends on what a is.

Q10

7. p = 2–r; 12. p = 2–r; 13. p = 2–r; 15. p = –r+2; 17. p = 2r;

18. p = 2–r; 21. p = 2–r; 30. q = 2–r–3, q = –1–r, p = –r+2.

Category 3 Q8c)

2. Any –3; 8. NR; 9. Any; 11. Any; 14. all when a = 3, none when 

a = greater than or less than 3; 23. a = 3; 24. NR; 25. NR; 29. Any 

when a equals 3, and none when a is anything else. 

Q10

2. p – 2 = r; 8. p = 2–r; 9. p = 2–r; 11. p = q–2+r; 14. p = 2–r; 23. 

NR; 24. NR; 25. NR; 29. r = –q–1, q+1 = –r.

Discussion

Some objects in mathematics are purely theoretical, with no physical counterpart, while

others do have such a counterpart. For example, Laborde (1995, 2002) has discussed with 

reference to geometry the nature of the difference between a drawing and a figure. She 

explains that the former is physical and perceptual, while the latter is theoretical and 

mathematical. However, most, if not all mathematical objects have symbolisms, which

may be viewed in different ways. A procept is one such variation on perspective, the

process versus object view of a symbol. But this is not the only way we can see symbols.

When we perceive the symbolisation of an object we may simply have a surface or 

observational view (Thomas, 2001), but in order to get a mathematical perspective of what 

it represents we have to interpret what we see (c.f., Booth & Thomas, 2000). This 

interpretation of the symbolisation or representation often requires us to interact with the 

object (Thomas & Hong, 2001), giving rise to identification of the object’s properties, 

often underlying invariants. One way that properties, and hence mathematical objects, arise 

is by reflective abstraction, and we then synthesise these abstracted properties into a new 

object, a mathematical one. For example, when first learning geometry, we may be told 

that a figure is a rectangle and our conception will be based on properties obtained by

perception, or by observation (Thomas & Hong, 2001). Even when we have seen many

rectangles, we will not have constructed the mathematical object of rectangle. It is only

when we have the properties that constitute the object that we have constructed the 

mathematical entity.

Consider the corresponding situation with regard to equation. We can form a surface

recognition of an equation based on the surface observation that it contains an ‘=’ sign, as 

in this study. This may be based on a understanding of properties of equations, such as the 

transitive nature of the = sign, and the use of letter as variable that we found. However, it 

may also be a pseudo-conception lacking depth of understanding, revealed by questions 

about whether x = x, 4 = 5, y = f(x), etc. are equations. The equation conception can be 
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elusive, not easy to tie down in terms of the properties that define the mathematical object.

What our research so far suggests is that the gestalt mathematical equation object 

comprises arithmetic numbers, variables, operators, the equals sign and the structure

combining them. This structural view is no doubt both fed by the developing understanding 

of properties of the others parts, and in turn feeds back to further understanding of the 

object. One’s mathematical understanding of these constituent parts becomes welded into a 

coherent whole, the mathematical equation that is much greater than the sum of the parts.

Of course, our mathematical understanding is also mediated by language and so any 

framework should include its vital role, and we are investigating the binding influence of

this, and the structural perspective. The evidence here is that students may have quite well 

developed understanding on one or more of the constituent parts, with little in other areas,

although, of course, there will be crossover effects between them.

Conclusion

We have concentrated in this paper on how students decide on what is, or is not an 

equation, and their ability to use transitivity of the equals sign, and to cope with letter as

variable. Previously (Godfrey & Thomas, 2003) we have provided more evidence for the 

role of student perspectives on variable and the equals sign in this process, and have 

distinguished a variety of perspectives on equation. While there is certainly much more to

be said about equation conceptions, these are summarised in our provisional outline

framework for equation in Figure 3. We note that one reason students may lack certain 

perspectives is that teaching may not highlight these properties explicitly. Thus, students 

will not be able to interact fully with the mathematical equation object. Certainly, there is

effort required to assist students to enrich their perspective on equation.

Figure 3. An outline framework of the mathematical equation object.

Structural form

Ignored or not 

understood

Specific unknown 

Generalised number

Result of a procedure 

Conditional equality 

Identical equality

Equivalence relation 

Mathematical Equation Object

Perspective on Letters

Perspective

on Operators

Perspective

on Number

Perspective on ‘=’ Sign 

Language
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